United International Journal of Engineering and Sciences (UIJES)

An International Peer-Reviewed (Refereed)Engineering and Science Journal

Impact Factor:8.075(SJIF) Vol-5, Issue- 4,(December);2025 ISSN:2582-5887 www.uijes.com

Self-Healing Concrete: A Comprehensive Review of Mechanisms, Materials, and Performance for Sustainable Infrastructure

Harendre Bhati¹, Asst, Prof, Dept. Of Civil Engg, IIMT College of Engineering Greater Noida

Manish Mahapatra²,Lakshaya Sharma³,Navneet⁴

Student of IIMT College of Engineering, Department of Civil Engineering

Abstract

The rapid deterioration of concrete structures due to cracking remains one of the most critical challenges in civil engineering. Cracks allow aggressive agents—moisture, chlorides, sulfates, and carbon dioxide—to penetrate and accelerate deterioration, reducing service life and increasing maintenance costs. Self-healing concrete (SHC) has emerged as a promising innovation capable of autonomously sealing cracks and restoring mechanical performance through chemical, physical, or biological mechanisms. This paper presents a comprehensive review of self-healing concrete, focusing on healing techniques, materials, reaction mechanisms, influencing parameters, advantages, limitations, and applications. Recent advancements in encapsulation technology, microbial induced calcite precipitation (MICP), crystalline admixtures, and vascular healing systems are critically analyzed. Experimental findings from major studies are consolidated to evaluate healing efficiency, crack width capacity, durability outcomes, and structural integration. The review also highlights sustainability benefits, practical implementation challenges, and future research directions. Overall, self-healing concrete stands out as a transformative material for constructing long-lasting, low-maintenance, and resilient infrastructure, aligning with global goals for sustainable development.

1. Introduction

Concrete is the most widely used construction material in the world due to its versatility, strength, availability, and low cost. Despite these advantages, concrete remains vulnerable to cracking caused by shrinkage, thermal gradients, mechanical loadings, and environmental influences. Cracks serve as pathways for aggressive agents, leading to corrosion of reinforcement, structural weakening, spalling, leakages, and ultimately high repair and rehabilitation costs. Traditional maintenance practices are reactive and labour-intensive, contributing significantly to the lifecycle cost of structures.

To address these challenges, researchers have introduced the concept of **self-healing concrete**, inspired by natural biological systems such as human skin and bones that can repair themselves. The self-healing approach aims to enable concrete to autonomously seal cracks without external intervention, thereby enhancing durability and extending structural service life. This technology aligns with sustainable construction goals by minimizing maintenance, reducing material use, and lowering carbon emissions associated with repair activities.

2. Concept and Mechanisms of Self-Healing Concrete

Self-healing concrete refers to cementitious materials capable of repairing cracks either naturally (autogenous healing) or through engineered strategies (autonomous healing). The underlying mechanisms can be broadly categorized as follows:

[Author] 17

United International Journal of Engineering and Sciences (UIJES)

An International Peer-Reviewed (Refereed)Engineering and Science Journal Impact Factor:8.075(SJIF) Vol-5, Issue- 1,2025 ISSN:2582-5887 www.uijes.com

2.1 Autogenous Healing

Autogenous healing occurs naturally in concrete due to:

- Continued hydration of unhydrated cement particles
- Calcium carbonate (CaCO₃) precipitation from calcium hydroxide reacting with carbon dioxide
- Swelling of cementitious materials
- Blocking of cracks by debris or moisture

Autogenous healing is limited to extremely fine cracks (\leq 0.2 mm) and requires the presence of moisture. Its efficiency decreases significantly with concrete age.

2.2 Autonomous Healing

Autonomous healing involves deliberate incorporation of healing agents or systems that activate upon cracking. Major mechanisms include:

2.2.1 Capsule-Based Healing

Microcapsules or macro-capsules filled with adhesives, polymers, resins, or mineral precursors are embedded in the concrete matrix. When cracks propagate, they rupture the capsules, releasing the healing agent into the crack.

Common healing agents:

- Epoxy resins
- Cyanoacrylates
- Sodium silicate
- Mineral admixtures

Advantages:

- High crack-filling efficiency
- Fast activation

Limitations:

- Capsule rupture not guaranteed
- Potential impact on mechanical strength

2.2.2 Vascular Healing Systems

Inspired by biological vascular networks, vascular channels are embedded in concrete and filled with healing chemicals. When cracks intersect these channels, the material flows out and seals them.

Advantages:

- Multiple healing cycles possible
- Suitable for large cracks

Limitations:

- Complex design
- Difficult scaling for large structures

2.2.3 Bacteria-Based (Biogenic) Healing

Microbial induced calcite precipitation (MICP) is one of the most widely studied biological healing mechanisms. Certain bacteria species such as *Bacillus pasteurii*, *Bacillus subtilis*, or *Sporosarcina ureae* produce CaCO₃ when supplied with nutrients. These bacteria are embedded in the concrete using:

- Spores
- Encapsulated forms
- Lightweight aggregates

When cracks form and water infiltrates, the bacteria become active, precipitating calcite to fill the cracks.

United International Journal of Engineering and Sciences (UIJES)

An International Peer-Reviewed (Refereed)Engineering and Science Journal Impact Factor:8.075(SJIF) Vol-5, Issue- 1,2025 ISSN:2582-5887 www.uijes.com

Advantages:

- Environmentally friendly
- Effective for cracks up to 1 mm
- Long-term durability

Limitations:

- Cost of bacterial cultures
- Nutrient supply challenges
- Risk of ammonia production

2.2.4 Crystalline Admixtures

These are hydrophilic compounds that react with water and unhydrated cement particles to form insoluble crystalline products. These crystals grow inside cracks and pores, blocking water pathways.

Advantages:

- Widely commercialized
- Simple mixing method
- Effective in wet environments

Limitations:

- Slower healing rate
- Effective mainly for cracks < 0.4 mm

3. Materials Used in Self-Healing Concrete

3.1 Encapsulation Materials

- Glass capsules
- Polymer capsules
- Hollow fibers
- Expanded clay aggregates as macro-carriers

3.2 Healing Agents

- Epoxy resin
- Polyurethane
- Sodium silicate
- Calcium lactate (for bacteria-based systems)
- Silica-based gels

3.3 Bacteria and Nutrients

- Bacillus spp.
- Urea and calcium nitrate
- Yeast extract or calcium lactate as nutrient carriers

3.4 Mineral Additives

- Fly ash
- Slag
- Limestone powder
- Silica fume

4. Healing Performance and Influencing Parameters

Healing efficiency depends on multiple factors:

4.1 Crack Width and Geometry

United International Journal of Engineering and Sciences (UIJES)

An International Peer-Reviewed (Refereed)Engineering and Science Journal Impact Factor:8.075(SJIF) Vol-5, Issue- 1,2025 ISSN:2582-5887 www.uijes.com

- Capsule and crystalline systems: workable up to 0.3–0.5 mm
- Biological systems: can heal cracks up to 1 mm
- Vascular systems: suitable for cracks >1 mm

4.2 Environmental Conditions

- Moisture availability significantly enhances healing
- Temperature influences bacterial activity
- Carbon dioxide concentration supports CaCO₃ formation

4.3 Age and Mix Proportions

- Self-healing is more effective in young concrete
- High binder content supports autogenous healing

4.4 Distribution of Healing Agents

- Uniform distribution improves healing probability
- Proper encapsulation prevents premature rupture

4.5 Interaction with Structural Loading

- Repeated loading can open healed cracks
- Healing materials should bond chemically with cement matrix

5. Experimental Findings from Literature

Various experimental studies have demonstrated significant improvement in concrete durability using SHC technologies.

5.1 Mechanical Strength Recovery

Studies show:

- Bacteria-based concrete can recover up to **80–90%** of its original compressive strength after healing.
- Capsule-based systems restore **40–70%** tensile strength.

5.2 Reduction in Permeability

- Healing reduces water permeability by 60–95%, depending on crack size and curing condition.
- Chloride penetration decreases substantially, delaying reinforcement corrosion.

5.3 Durability Enhancements

- Improved resistance to freeze–thaw cycles
- Increased resistance to sulfate attack
- Prolonged service life by reducing ingress of harmful ions

5.4 Microstructural Analysis

SEM, XRD, and EDS confirm:

- Formation of CaCO₃ crystals
- Epoxy filling in capsule-based systems
- Dense crystal networks in cracks treated with crystalline admixtures

6. Applications of Self-Healing Concrete

Self-healing concrete has been tested and used in various infrastructure settings:

6.1 Transport Infrastructure

- Bridges
- Pavements
- Tunnels

United International Journal of Engineering and Sciences (UIJES)

An International Peer-Reviewed (Refereed)Engineering and Science Journal Impact Factor:8.075(SJIF) Vol-5, Issue- 1,2025 ISSN:2582-5887 www.uijes.com

6.2 Hydraulic Structures

- Dams
- Canals
- Water tanks

6.3 Buildings

- Foundations
- Basements
- High-rise structures

6.4 Underground Structures

- Metro tunnels
- Subways
- Sewage systems

6.5 Marine Structures

- Ports
- Breakwaters
- Off-shore platforms

The ability to self-repair crack damage is especially useful in locations where accessibility for maintenance is limited.

7. Advantages of Self-Healing Concrete

- Significant reduction in maintenance and repair costs
- Enhanced durability and longer service life
- Improved water tightness
- Lower carbon footprint due to reduced material use
- Suitable for high-risk environments
- Increased resilience against cracking

8. Limitations and Challenges

Despite these advantages, challenges remain:

8.1 Cost

Self-healing agents, particularly bacteria-based or capsule-based solutions, increase initial construction costs by 20–50%.

8.2 Large-Scale Production Issues

- Difficulty in uniformly distributing healing agents
- Potential reduction in compressive strength due to capsules

8.3 Biological Challenges

- Survival of bacteria over long periods
- Nutrient supply and ammonia release

8.4 Lack of Universal Standards

- No standardized testing protocol for healing efficiency
- Limited long-term field data

9. Sustainability and Environmental Impact

Self-healing concrete supports sustainable development:

United International Journal of Engineering and Sciences (UIJES)

An International Peer-Reviewed (Refereed)Engineering and Science Journal Impact Factor:8.075(SJIF) Vol-5, Issue- 1,2025 ISSN:2582-5887 www.uijes.com

9.1 Reduction in Carbon Emissions

- Fewer repair activities reduce cement consumption
- Extends life cycle of structures, lowering environmental footprint

9.2 Eco-Friendly Biological Systems

- Bacteria-based solutions rely on natural calcite production
- Reduced reliance on synthetic polymers

9.3 Lower Resource Utilization

- Minimizes need for additional labor and construction material
- Supports low-maintenance infrastructure

10. Future Research Directions

Key areas for future development include:

10.1 Multi-Functional Healing Systems

Combining capsule, bacterial, and crystalline systems for enhanced healing.

10.2 Smart Sensing and Monitoring

Integrating sensors to monitor crack formation and healing in real time.

10.3 Field-Scale Performance Data

Long-term studies on bridges, tunnels, and marine structures.

10.4 Cost Optimization

Developing low-cost bacterial cultures and more durable capsules.

10.5 Nano-Technology Integration

Use of nano-silica, nano-clays, and graphene to improve healing kinetics.

10.6 AI-Driven Optimization

Machine learning models to predict healing efficiency, crack patterns, and lifecycle cost analyses.

11. Conclusion

Self-healing concrete represents a major step towards sustainable and resilient infrastructure. By enabling concrete to autonomously repair cracks, SHC significantly enhances durability, reduces maintenance costs, and prolongs service life. Various healing mechanisms—including capsule-based systems, microbial induced calcite precipitation, crystalline admixtures, and vascular networks—offer diverse solutions for different structural needs. While challenges such as cost, large-scale implementation, and biological stability persist, ongoing research continues to improve efficiency and applicability. With increasing global emphasis on sustainability, self-healing concrete is poised to play a crucial role in future construction technologies, supporting the development of long-lasting and low-maintenance structures.

References

- [1] K. Van Tittelboom, N. De Belie, D. Van Loo, and P. Jacobs, "Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent," *Cement and Concrete Composites*, vol. 32, no. 7, pp. 497–509, 2010.
- [2] J. M. Henk and E. Schlangen, "Self-healing of concrete: A new paradigm for durable structures," *HERON*, vol. 53, no. 1, pp. 1–30, 2008.

United International Journal of Engineering and Sciences (UIJES)

An International Peer-Reviewed (Refereed)Engineering and Science Journal Impact Factor:8.075(SJIF) Vol-5, Issue- 1,2025 ISSN:2582-5887 www.uijes.com

- [3] H. W. Reinhardt and M. Jooss, "Permeability and self-healing of cracked concrete as a function of temperature and crack width," *Cement and Concrete Research*, vol. 33, no. 7, pp. 981–985, 2003.
- [4] J. Wang, H. Soens, W. Verstraete, and N. De Belie, "Self-healing concrete by use of microencapsulated bacterial spores," *Cement and Concrete Research*, vol. 56, pp. 139–152, 2014.
- [5] H. M. Jonkers, "Bacteria-based self-healing concrete," *HERON*, vol. 56, nos. 1–2, pp. 1–12, 2011.
- [6] V. C. Li, "Engineered cementitious composites (ECC) for structural applications," *Journal of Materials in Civil Engineering*, vol. 20, no. 2, pp. 97–105, 2008.
- [7] V. Wiktor and H. M. Jonkers, "Quantification of crack-healing in novel bacteria-based self-healing concrete," *Cement and Concrete Composites*, vol. 33, no. 7, pp. 763–770, 2011.
- [8] L. Ferrara, V. Krelani, and M. Carsana, "A fracture testing based approach to assess crack healing of cementitious materials," *Construction and Building Materials*, vol. 68, pp. 535–551, 2014.
- [9] K. Sisomphon, O. Copuroglu, and E. Koenders, "Self-healing of surface cracks in mortars with expansive additives and crystalline additives," *Cement and Concrete Composites*, vol. 34, no. 4, pp. 566–574, 2012.
- [10] M. Şahmaran, G. Yildirim, and M. Al-Emam, "Self-healing capability of cementitious composites incorporating different supplementary cementitious materials," *Journal of Materials in Civil Engineering*, vol. 25, no. 10, pp. 1270–1280, 2013.
- [11] S. Qian, J. Zhou, and E. Schlangen, "Influence of curing conditions and pre-cracking time on the self-healing behavior of ECC," *Cement and Concrete Composites*, vol. 32, no. 9, pp. 686–693, 2010.
- [12] D. Palin, V. Wiktor, and H. M. Jonkers, "Bacteria-based concrete: From concept to market," in *Proc. 3rd Int. Conf. on Bio-based Building Materials (ICBBM)*, 2017.
- [13] H. Alghamdi, M. Alnowaiser, and Z. Ahmad, "Review of self-healing mechanisms in cementitious materials," *Journal of Cleaner Production*, vol. 259, Art. no. 120595, 2020.
- [14] D. Snoeck and N. De Belie, "Recurrent autogenous healing in strain-hardening cementitious composites with superabsorbent polymers," *Construction and Building Materials*, vol. 95, pp. 506–524, 2016.
- [15] K. Van Tittelboom and N. De Belie, "Self-healing in cementitious materials—A review," *Materials*, vol. 6, no. 6, pp. 2182–2217, 2013.
- [16] J. Healey and P. Grassl, "Modelling of autonomous self-healing mechanisms in concrete," *Cement and Concrete Research*, vol. 134, Art. no. 106088, 2020.
- [17] H. Huang, G. Ye, D. Damidot, and K. van Breugel, "Self-healing in cementitious materials: A review," *Cement and Concrete Research*, vol. 52, pp. 68–82, 2013.
- [18] B. Park, J. Park, and S. Parameswaran, "Encapsulation techniques for self-healing concrete," *Journal of Materials Science*, vol. 45, no. 14, pp. 3946–3950, 2010.

United International Journal of Engineering and Sciences (UIJES)

An International Peer-Reviewed (Refereed)Engineering and Science Journal Impact Factor:8.075(SJIF) Vol-5, Issue- 1,2025 ISSN:2582-5887 www.uijes.com

[19] M. M. Pelletier, R. Brown, and A. Shukla, "Self-healing properties of engineered cementitious composites under different environmental conditions," *Journal of Advanced Concrete Technology*, vol. 9, no. 2, pp. 167–181, 2011.

[20] F. Ameri, A. Shojaei, and P. Saffari, "Experimental investigation of microcapsule-based self-healing concrete," *Construction and Building Materials*, vol. 212, pp. 276–286, 2019.