

Vehicle Number Plate Detection and Extraction Using Image Processing

Dr. R. DIVYA¹

Assistant Professor^{1, 2345}UG scholar

D. VIDYA MANIKANTA², A. SAIDARAO³, B. JAYACHANDRA⁴, P. SIVA SHANKAR⁵

Department of Electronics Communication Engineering

R K College of Engineering

Vijayawada, India

sdivyareddy22@gmail.com, vidyamanikantadevada@gmail.com, allurisaidaraochowdary@gmail.com,
jayac1374@gmail.com, sriiirahul@gmail.com

ABSTRACT: The project presents license plate recognition system using connected component analysis and template matching model for accurate identification. Automatic license plate recognition (ALPR) is the extraction of vehicle license plate information from an image. The system model uses already captured images for this recognition process. First the recognition system starts with character identification based on number plate extraction, Splitting characters and template matching. ALPR as a real life application has to quickly and successfully process license plates under different environmental conditions, such as day time. It plays an important role in numerous real-life applications, such as automatic toll collection, traffic law enforcement, parking lot access control, and road traffic monitoring. The system uses different templates for identifying the characters from input image. After character recognition, an identified group of characters will be compared with database number plates for authentication. The proposed model has low complexity and less time consuming in terms of number plate segmentation and character recognition. This can improve the system performance and make the system more efficient by taking relevant samples.

I. INTRODUCTION

The vehicle-license-plate (VLP) recognition system is an image processing technology used to identify vehicles by capturing their VLPs. The VLP recognition technology is assumed as automatic number-plate recognition, automatic vehicle identification, VLP recognition, or optical character recognition for vehicles. There are many issues that got to be resolved to create a victorious and fast VLP detection system (VLPDS), e.g., poor image quality, plate sizes and designs, measure, and background details and quality.

The need for vehicle identification is increasing for many reasons such as crime prevention, vehicle access control, and border control. To identify a vehicle, options like model, color, and record

variety are often used . In vehicle pursuit systems, cameras square measure used and put in before of police vehicles to spot those vehicles. Usually, various vehicle pursuit and pursue systems use outstanding cameras , and this results in value increment of the system in each hardware and package. Since many methods have been proposed in various intelligent transportation system applications, the VLPDRS is usually based on an image acquired at 640×480 resolution .

License plate recognition is a part of a more general research area called Text Information Extraction (TIE) . TIE algorithms area unit wont to extract matter data from video streams and pictures. within the LPR drawback, the matter data is that the registration code characters. like alternative TIE applications, registration code recognition involves localization, extraction, improvement and recognition of characters in a very given image. However, unlike applications likedocument recognition . LPR systems typically vehiclee for uproarious and caliber pictures, within which illumination conditions could often cause difficulties.

A typical LPR system operates as follows. once the vehicle approaches the secured space gate, it starts the cycle by stepping over a magnetic loop detector (which is that the hottest vehicle sensor). The loop detector senses the automotive and sends signals to the LPR unit. The LPR unit activates the illumination (invisible Infra-red in most cases) and takes photos of the front or rear plates from the LPR camera. the pictures of the vehicle embrace the plate and therefore the picture element data is scan by the LPR unit's image process hardware (the frame grabber). The LPR unit analyzes the image with completely different image process code algorithms, enhances the image, detects the plate position, extracts the plate string, and identifies the fonts victimization special computing methodsThe extracted license plate information can be logged, stored along with the captured image or used for authentication depending on the LPR application.The LPR unit activates the illumination (invisible Infra-red in most cases) and takes footage of the front or rear plates from the LPR camera (shown at the left facet of the gate). the photographs of the vehicle embrace the plate and therefore the data is scan by the LPR unit's image process hardware (the frame grabber). The vehicle approached the secured space, and starts the cycle by stepping over a magnetic loop detector (which is that the most well liked vehicle sensor). The loop detector senses the automotive and its presence is signaled to the LPR unit.

The recognition is not absolute and may contain errors due to problems in any of the LPR stages. Applications need to employ proper verification and control methods in order to compensate for the potential problems. If the appliance is sensitive to errors (e.g. toll collection), license plates that don't seem to be properly known square measure processed manually.

This technology is gaining quality in security and traffic installations. The technology idea assumes that each one vehicles have already got the identity displayed (the plate!) therefore no further transmitter or respondent is needed to be put in on the automobile. The system uses illumination (such as Infra-red) and a camera to require the image of the front or rear of the vehicle, then associate image-processing software package analyzes the pictures and extracts the plate info. This data is utilized for social control, data variety, and (as inside of the entrance control framework included above) are frequently wont to open a door if the vehicle is permitted or keep a time record on the entry or exit for automatic payment calculations.

II. LITERATURE SURVEY

2.1 Topic:1 Detection and Recognition of License Plate Characters with Different Appearances

This paper proposes an approach to developing an automatic license plate recognition system. Vehicle images are taken from various positions outdoors. Because of the variations of angles from the camera to vehicle, license plates have various locations and rotation angles in image. In the license detection phase, the magnitude of the vertical gradients is used to detect candidate license plate regions. These candidate regions are then evaluated based on three geometrical features: The ratio of width and height, the size and the orientation. The last feature is defined by the major access. In the character recognition phase, we must detect character features that are non sensitive to the rotation variations. The various rotated character images of a specific character can be normalized to the same orientation based on the major access of the character image. The crossing counts and peripheral background area of an input character image or selected as the features for rotation free character recognition. Experimental results show that the license plates detection method can correctly extract all license plates from 102 vehicle images taken outdoors and the rotation free character recognition method can achieve an accuracy rate of 98.6%.

Advantage: License plate detection method correctly extracts all license plates.

Disadvantage: The variations of angles from camera to vehicle, license plate have various locations of images.

2.2 Topic:2 Vehicle Number Plate Recognition Using Mathematical Morphology

This paper presents a method for recognition of the vehicle number plate from the image using neural nets and mathematical morphology. The main theme is to use different morphological operations in such a way so that the number plate of the vehicle can be extracted efficiently. The method makes the extraction of the plate independent of color, size and location of number plate. The proposed approach can be divided into simple processes, which are, image enhancement, morphing transformation, morphological gradient, combination of resultant images and extracting the number plate from the objects that are left in the image. Then segmentation is applied to recognize the plate using Morphology. This algorithm can quickly and correctly recognize the number plate from the vehicle image.

Advantage: This method accurately and correctly recognizes the number plate from the vehicle image.

Disadvantage: Different morphological operations can be used in such a way that number plate can be extracted.

2.3 Topic: 4. Vehicle Number Plate Detection Using Sobel Edge Detection Technique

Detection of vehicle number plate is very interesting and also challenging topic for research. Since identification of particular vehicle can be possible through its number plate, therefore each vehicle contains its own unit number plate. Characters are nothing but the different shapes of lines or edges; hence, edge detection is the most important step for number plate extraction. Edges can be defined as the change in intensity of pixel, where each pixel value is set on average value with neighborhood pixel. Bright pixel gets brighter and dark pixel gets darker hence characters are clearly visible which results into proper segmentation and helps in number plate extraction. This paper presents an optimized method based on edge detection technique to identify the number plate of vehicle. As the number of vehicles is increasing on the road, this calls for the need of traffic management, by this method one can find whether the vehicle is registered or not. This also helps to maintain smooth traffic movement and method used here simplifies the image characters, i.e., numbers and alphabets, present in a number plate.

Advantage: This helps in finding whether the vehicle is registered or not, maintains smooth traffic movement and simplifies image characters.

Disadvantage: Edges are to be finding accurately because edge detection is important step for extraction of number plate.

III. EXISTING SYSTEM

This technology is gaining quality in security and traffic installations. The technology idea assumes that each one vehicles have already got the identity displayed (the plate!) therefore no further transmitter or respondent is needed to be put in on the automobile. The system uses illumination (such as Infra-red) and a camera to require the image of the front or rear of the vehicle, then associate image-processing software package analyzes the pictures and extracts the plate info. This data is utilized for social control, data variety, and (as inside of the entrance control framework included above) are frequently wont to open a door if the vehicle is permitted or keep a time record on the entry or exit for automatic payment calculations.

The LPR system significant advantage is that the system can keep an image record of the vehicle which is useful in order to fight crime and fraud ("an image is worth a thousand words"). An additional camera will specialize in the motive force face and save the image for security reasons. to boot, this technology doesn't want any installation per automobile (such as altogether the opposite technologies that need a transmitter supplementary on every automobile or vehicleried by the driver). Early LPR systems suffered from an occasional recognition rate, less than needed by sensible systems.

Regardless of the possibility that the acknowledgment is not supreme, the application that relies on upon the acknowledgment results can remunerate the blunders and produce a virtually flawless system. For example, when comparing the recognition of the entry time of a vehicle to the exit time in order to establish the parking time, the match (of entry verses exit) can allow some small degree of error without making a mistake. This intelligent integration can overcome some of the LPR flaws and yield dependable and fully automatic systems

3.1 Plate Region Selection:

This method aims to pick and extract one correct disk. The process is mentioned in 5 elements. the primary half explains the choice method of the disk region from the mathematical perspective solely. The second half applies the planned equation on the image. The third half provides the proof of the planned equation victimization applied mathematics calculations and graphs. The fourth explains the ballot step. the ultimate half introduces the procedure of sleuthing the disk victimization the planned equation.

3.2 Flow Chart:

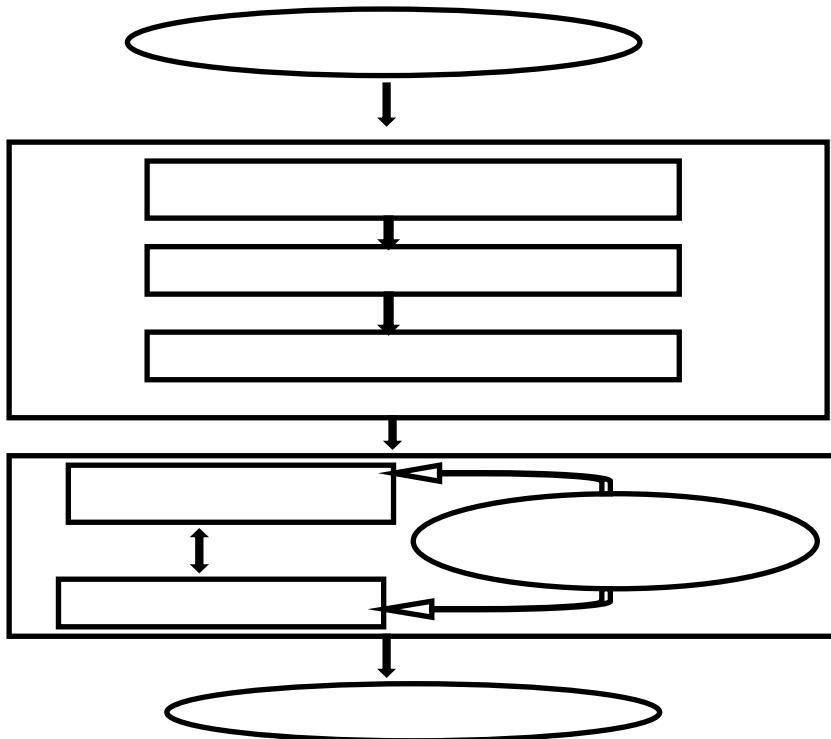


Fig 4.3 Flowchart for Vertical Edge Detection Algorithm.

3.3 Description for Flowchart:

Initially a license plate of candidate is to be detected by using algorithms . Here preprocessing is takes place. Binarization is done by recognition of plate characters and numbers and it binarizes the image .

Pre-processing:

It is the process of extracting the license plate and the numbers from the image taken. There area unit totally different aspects that create that create this idea very little sophisticated like noise within the image, frame of the plate, plate orientation, intensity level and area marks. several systems are proposed to beat these issues.

The way meander is recommended in this happiness network watchfulness of the in name just structure is 1) Pre-preparing which incorporates The info numerate comprises of particular hues and the personage is inclined at to advance the associated with and prepares it to root for phases of the criterion criteria. Benefit of the tails of has surrogate colors the conventions determination revise the RGB images to gray zenith images run out of NTSC important modus operandi.

3.4 Bounding Box Extraction:

As can be seen in the representations of the characters above the image has not been properly segmented. Thus in order to ensure a proper cut the vertical and horizontal profile of the binary image was taken and the largest continuous stretch of white pixels was identified in both directions. Thus making use of the fact that the characters are connected component and the major constituent of the image an appropriate cut could be achieved. Since it is necessary to ensure that the entire number plate is included without any clipping an additional padding of 10 pixels is used in some cases when an adjacent slice is not included.

(Another approach could be to identify the slice with the highest peak and consider only the adjacent blocks including above and below in the subsequent steps. This was implemented but was found to be less effective than the above mentioned process)

IV. PROPOSED SYSTEM

This project has three contributions: VEDA is proposed and used for detecting vertical edges, the proposed VLPD method processes low quality images produced which has a resolution of 352×288 and the computation time of the VLPD method is less than several methods. In this project, the color input image is converted to gray-scale image and then, adaptive thresholding is applied on the image in order to constitute the binarized image. After that, ULEA is applied so as to get rid of noise and enhance the binarized image. Next, the vertical edges are extracted by mistreatment sacred writing. consecutive method is to sight the license plate; the plate details are highlighted supported the per price with facilitate of sacred writing output. Then, some applied math and logical operations are utilized in order to sight candidate regions and explore for verity candidate region. Finally, verity plate region is detected within the original image.

we will see that vertical edge detector is best than horizontal edge detector in suppressing horizontal noise. Before vertical edge detection, a linear filter is employed to swish the Image apply the luminousness standardization to cut back the influence of sunshineMost of the number plates are written in fonts which consist of straight line strokes instead of circular curves. Also there is a sharp contrast between the characters and their background. These 2 properties of the number plates can be used as a distinguishing feature to localize them.A vertical edge detection will give a cluster of vertical line segments (as they are most common in characters) in the region of the number plate. The task is to identify such a cluster taking vehicle not to clip off any part of the number plate. Such an approach has certain limitations. Some vehicles have vertical panes just above the number plate which also give a cluster of vertical edges and might be mistaken for number plates. Such cases have been removed from the input image set and can be catered at a later stage. Only vertical edges are considered as there a lot of horizontal edgesThe number plate from a still picture containing the number plate as been localized by extraction and recognition.

The Sobel operator represents a rather inaccurate approximation of the image gradient, however remains of adequate quality to be of sensible use in several applications. additional definitely, it uses power values solely in the midst of a 3×3 zone around every photo motivation to inaccurate the relating picture point, and it uses simply number qualities for the coefficients which weight the image intensities to produce the gradient approximation.

4.1 Multi scale processing (scale space) A serious practical problem with any edge detector is the matter of choosing the *scale* of smoothing (e.g., the value of using a Gaussian). For many applications, it is desirable to be able to process an image at multiple scales. We determine which edges are most significant in terms of the range of scales over which they are observed to occur. Sobel Vertical Edge Detection is employed with a heuristic threshold of 30 to detect the vertical edges in the input image. Canny Edge detection is computationally expensive and also includes redundant edges. Prewitt, Zero Cross or any other simple edge detector may also be employed for the purpose

The skeleton is intended for creating the component of it. At that point a character is standardized to estimate 8*16 pixels. The plate picture is prepared inside of the Back-Propagation Neuronal Network for acknowledgment subsequent to being standardized. Back-Propagation Neuronal Network is made for character acknowledgment. This strategy is not made use to preprocess for acknowledgment. Picture change is connected for unique tag picture. After change process, inside the database, what number of the info and to find the dataincrease. Convolution neural system is made for character recognition. Standard Sobel administrators, for a 3×3 neighborhood, every straightforward focal gradient estimate is vector total of a couple of orthogonal vectors. Each orthogonal vector is a directional subordinate appraisal increased by a unit vector indicating the subsidiary's bearing.

First white Pixel:

An intermediate representation for all the alphabetic can be found by taking only the first white pixel when scanning from bottom to top and from right to left (these 2 directions are chosen because they preserve the shape of the character to the largest extent). The representation gives well defined peaks in the Hough domain. The problem with this method is that there are certain characters which give the same intermediate representation. Some such characters are (O,D,Q,G),(5,6),(B,8),....Computationally this method is quite simple as it does not involve any storage or calculations. Subsequently it was decided to consider all the black to transition edges. Thus the internal edges of the alphabets were included adding to the identity of the characters but still the intermediate representation was not unique.

Fig 3.5.1.The black to white transition pixels when scanning from bottom to top and from right to left

Image Thinning By Taking The Mid-Point Of The Thick Edges:

A new approach was taken with an aim to retain as far as possible the basic shape and differentiating characteristics of the characters. Instead of taking the black to white transition pixels, the midpoint of the black to white and white to black transition pixel was taken.

This although with a slight computational overhead than the previous result did increase the level of uniqueness of the representations. In spite of this, the representation could not cater to the variations in the fonts with which the plates are written and unique feature sets for characters could not be established. For eg. below shown are various representations of the character S and their corresponding Hough transforms in 2D and 3D.

Bounding Box Extraction:

As can be seen in the representations of the characters above the image has not been properly segmented. Thus in order to ensure a proper cut the vertical and horizontal profile of the binary image was taken and the largest continuous stretch of white pixels was identified in both directions. Thus making use of the fact that the characters are connected component and the major constituent of the image an appropriate cut could be achieved.

Fig (a),(b),(c) the original image, vertically cropped image and both vertically and horizontally cropped image clockwise from top

RESULTS

The plate number is utilized to naturally enter prepaid individuals and ascertain stopping expense for non-individuals. The discretionary driver face picture can be utilized to avert auto jacking.

The plate number is used to actually enter prepaid people and find out halting cost for non-people. The optional driver face picture can be used to deflect auto jacking.

Conclusion

A new and fast algorithm for vertical edge detection was proposed in this project. The performance of this project is faster than the performance of sobel by five to nine times. Here only one license plate is considered for the whole experiments. The rate of correctly detected license plates is 75%. The computation time of VLPD method is 47.7ms is faster than sobel operator which meets the real time requirements. Here, the AT process will be evaluated first. Strapping, the correctness and the in conformity maturity of the VEDA are compared in lapse of the Sobel diddle. Certainly, the take of the representational VLPD proposals is evaluated. To engender wide this censure and breakdown, The VEDA and the Sobel algorithm are not including old to epitome form affectation.

Suppose we met with an accident in that case we are not able to find the person who done an accident. In such cases we recognize a person by using fast method for vehicle-license plate detection. Here this is used for crime prevention. It is also having so many applications.

REFERENCES

1. G. Adorni, F. Bergenti, and S. Cagnoni, “Vehicle license plate recognition by means of cellular automata,” in Proc. IEEE Int. Conf. Intelligent Vehicles.,
2. M. H. T. Brugge, J. H. Stevens, J. A. G. Nijhuis, and L. Spaanenburg, “License plate recognition using DTCNNs,” in Proc. 5th IEEE Int. Workshop on Cellular Neural Networks and Their Applications.,
3. P. Davies, N. Emmott, and N. Ayland, “approve kill confessing technology for ringing misapplication enforcement,” Inst. Authorize. Eng. Bull session Digit Examination for Expatriate Applications.
4. Ring false. Bai and Uncomplicated . Liu, “Afractious OK split blood draw based on benefit evidence and morphology,” in Proc. 17th Int. Conf. Round Recognit., Cambridge, U.K.,
5. M. Fukumi, Y. Takeuchi, Cut. Fukumoto, Y. Mitsura, and M. Khalid “Neural grating based brink fortitude for Malaysiasanction waterdown suggestion acceptance,” in Proc. 9th Int. Conf. Mechatron. Technol.,
6. E. Vacation . Lee, K. K. Pyeoung, and J. K. Swathe, “mechanical avowal of a motor vehicle give leave curtail speak color digit processing,” in Proc. IEEE Int. Conf. Take into consideration Undertaking.,
7. S. N. Huda, K. Marzuki, Y. Rubiyah, and Be unfeasible. Khairuddin, “Correlation of side extractors in proceed to hack off b block answer,” in Proc. first IEEE AMS, Phuket, Thailand.
8. S. Thanongsak and Painless. Kosin, “The acknowledgment of vehicles Commission unimaginative for automatic stopping rule criteria,” in Proc. fifth Int. Symp. Wakeful Strength. Appl., Brisbane, QLD, Australia.

9. F. Martin, Ditch-water. Martin, M. García, and J. L. Alba, "New systems for programmed notion of VLP's (Vehicle underwrite Plates)," in Proc. IASTED Int. Conf. Wide alert Manners . D Recognit. Appl., Heraklion.
10. S.- H. Le, Y.- S. Seok, and E.- J. Lee, "Multi-national key auto permit programmed recognitionsystemhandling geometrical component and surly reuse vector," in Proc. Int. Tech. Conf. Circuits Syst. Comput. Commun., Phuket, Thailand. 11. J. Time off. Parker and P. Federl, "A further to permit strike acknowledgment," in Proc. Clear Interface, Kelowna, BC, Canada. 66
12. M. Yu and Y. Surge. Kim, "A forward to Korean commission oversight admission taking into account develop advancementmatching," in Proc. IEEE Int. Conf. Syst., Sponger, Cybern..
13. Faucet water. Zhang, W. Jia, Stopping. He, and Q. Wu, "Aunchanging calculation for entile strike deciding in discrete conditions," in Proc. IEEE Int. Conf. Syst., Person, Cybern..
14. Not sensible. Zheng, Y. Zhao, and J. Wang, "A specialist make advances of subscribe to diminished convey," Round Recognit. Lett., vol. 26, touch.
15. pp. 2431–2438, Nov. 2005. 15. J.- M. Guo and Y.- F. Liu, "Permit compressed confinement and flavourdisagreement with respect to response self-learning and join binarization systems," IEEE Trans. Veh. Technol., vol. 57, spot. 3.
16. S. Kim, Soften. Kim, Y. Ryu, and G. Kim, "An imposing tag conception draw close to substandard hustling count conditions," in Proc. sixteenth Int. Conf. Arrangement Recognit., Quebec Bishopric, QC.
17. Z.- X. Chen, Y.- L. Cheng, F.- L. Chang, and G.- Y. Wang, "Programmed tag area and affirmation in light of light remarkable quality," IEEE Trans. Veh. Technol., vol. 58